Results

<< Click to Display Table of Contents >>

Navigation:  Flexcom > Examples > A - Top Tensioned Risers > A03 - Pipe-in-Pipe Production Riser >

Results

Previous pageNext page

Standard Analysis

Dynamic results from both time domain and frequency domain analyses are presented below in terms of envelopes of effective tension and von Mises stress for the three sections. Results in all cases are plotted for elements up to 100 ft below the Spar keel; above this point unrealistically high stresses could be expected due to the crude nature of the Spar/riser interaction model used here. In the case of the tubing, results are presented for elements above the mudline only.

The Dynamic Tensions in Production Tubing figure and Dynamic Stresses in Production Tubing figure below show the results for the production tubing. Assuming the steel in the riser is Grade 80, the stresses are everywhere below allowable. Overall the dynamic variation is small, as might be expected with 8,000 ft of tubing below the mudline included in the model. Next, the corresponding plots for the inner riser are presented in the Dynamic Tensions in Inner Riser figure and Dynamic Stresses in Inner Riser figure below. The somewhat “jagged” plot is due to the variation in bending moment caused by the two different and alternating pipe-in-pipe connection types. Finally, the outer riser results are shown in the Dynamic Tensions in Outer Riser figure and the Dynamic Stresses in Outer Riser figure below. The agreement of results obtained from the time domain and frequency domain analyses is shown to be excellent.

Results_Dynamic_Dynamic Tensions in Production Tubing

Dynamic Tensions in Production Tubing

Results_Dynamic_Dynamic Stresses in Production Tubing

Dynamic Stresses in Production Tubing

Results_Dynamic_Dynamic Stresses in Production Tubing

Dynamic Tensions in Inner Riser

Results_Dynamic_Dynamic Stresses in Inner Riser

Dynamic Stresses in Inner Riser

Results_Dynamic_Dynamic Tensions in Outer Riser

Dynamic Tensions in Outer Riser

Results_Dynamic_Dynamic Stresses in Outer Riser

Dynamic Stresses in Outer Riser

Specialised VIV Simulation

Modal Analysis

Results from the modal analysis are summarised below. It is clear from the table that the bending modes occur in identical pairs at each modal frequency, which is expected behaviour for a top-tensioned riser. This data is subsequently passed to Shear7 via the MDS file.

Modal Solution Summary

                           *** Summary of Results ***                                     

                           --------------------------                                     

 

---------------------------------------------------------------------------------------------------------------------------

                                                                                    Max Y-         Max Z-           Max    

                                                                        Max         Bending        Bending        Combined 

 Eigenpair         Eigenvalue          Period      Type              Curvature      Stress         Stress          Stress  

                                        (s)                           (1/ft)       (lbf/ft^2)     (lbf/ft^2)      (lbf/ft^2)

---------------------------------------------------------------------------------------------------------------------------

       1              0.0927          20.6340     Bending           0.3894E-04     0.0000E+00     0.5823E+05     0.5823E+05

       2              0.0932          20.5799     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

       3              0.3714          10.3103     Bending           0.7561E-04     0.0000E+00     0.1131E+06    -0.1131E+06

       4              0.3733          10.2833     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

       5              0.8361           6.8715     Bending           0.1123E-03     0.0000E+00     0.1681E+06     0.1681E+06

       6              0.8405           6.8534     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

       7              1.4874           5.1519     Bending           0.1489E-03     0.0000E+00     0.2232E+06    -0.2232E+06

       8              1.4952           5.1384     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

       9              2.3258           4.1200     Bending           0.1854E-03     0.0000E+00     0.2783E+06     0.2783E+06

      10              2.3381           4.1091     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      11              3.3523           3.4317     Bending           0.2220E-03     0.0000E+00     0.3341E+06    -0.3341E+06

      12              3.3700           3.4227     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      13              4.5677           2.9399     Bending           0.2584E-03     0.0000E+00     0.3896E+06     0.3896E+06

      14              4.5920           2.9321     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      15              5.9734           2.5708     Bending           0.2953E-03     0.0000E+00     0.4465E+06    -0.4465E+06

      16              6.0052           2.5640     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      17              7.5706           2.2836     Bending           0.3312E-03     0.0000E+00     0.5022E+06     0.5022E+06

      18              7.6111           2.2775     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      19              9.3609           2.0536     Bending           0.3705E-03     0.0000E+00     0.5637E+06    -0.5637E+06

      20              9.4112           2.0481     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      21             11.3461           1.8653     Bending           0.4057E-03     0.0000E+00     0.6197E+06     0.6197E+06

      22             11.4073           1.8603     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      23             13.5280           1.7083     Bending           0.4420E-03     0.0000E+00     0.6779E+06    -0.6779E+06

      24             13.6013           1.7037     Unknown           0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

      25             15.4122           1.6005     Torsional         0.0000E+00     0.0000E+00     0.0000E+00     0.0000E+00

 

Shear7 Analysis

From the perspective of a VIV-induced fatigue assessment of the inner riser, the results of interest from Shear include:

Numbers of the excited modes (taken from section "2.2.1 Results of the Mode Interaction Analysis")

Modal time share probabilities (taken from section "2.2.1 Results of the Mode Interaction Analysis")

Modal frequencies (taken from section "9. Modal damping ratio "zeta", modal mass, and modal frequency for the mainly excited modes")

Modal amplitudes (taken from "11. Modal Displacement Amplitude")

Relevant extracts from the Shear7 output file are reproduced here in order to help you to familiarise yourself with the various data outputs (assuming you are not an experienced user of Shear7).

Shear7 Output File Extracts

      2.2.1 Results of the Mode Interaction Analysis:

 

     Based on the non-zero power-in lengths and the power cutoff value of: 0.05

      the number of modes above cutoff is:           5

      These modes are: Time Share                     Excitation Dominant Mode

                     Probabilities:                      Zone #    Amplitude:

             5           0.6776                            1       0.1000E+01

             6           0.1154                            1       0.9805E+00

            10           0.0529                            1       0.5515E+00

            11           0.0731                            1       0.5394E+00

            12           0.0811                            1       0.5237E+00

                        --------                                    --------

      Cumulative sum:    1.0000     Primary zone amplitude limit:  0.3000

      Lowest And Highest Excited Mode Number

      Nmmin=  5     Nmmax= 12

 

     9. Modal damping ratio "zeta", modal mass,

        and modal frequency for the mainly excited modes.

 

       mode no.  damping ratio  modal mass(slug) frequency (Hz)

       -------------------------------------------------------

          5       0.15389           2568.612       0.24273

          6       0.10722           2565.540       0.29140

         10       0.05928           2557.277       0.48695

         11       0.05150           2535.415       0.53610

         12       0.04567           2588.692       0.58537

 

 

     11. Modal Displacement Amplitude

 

       Mode No.   Amplitude (ft or m)

       ---------------------------------

          5             0.38520

          6             0.38644

         10             0.08868

         11             0.09435

         12             0.08762

 

Modal Postprocessing

The solution database produced by Modes contains information on all modes (whether bending, axial, torsional or mixed modes), while the Shear7 output relates specifically to pure bending modes. In order to extract the relevant mode shapes from Modes, the relevant mode number are obtained from the Modal Solution Summary table, using the Shear7 mode number as an index in the table. For example, the first VIV mode identified by Shear7 is Mode No.5, and this corresponds to Mode No.9 in the output from Modes. All 5 mode shapes of interest overlaid in a single plot are shown below. Although not an issue in this case, it is advisable to examine the various mode shapes to verify that they represent pure bending modes (viewing two separate planes side-by-side in the Model View is quite helpful in this respect) and reduce the possibility of mixed modes being included.

Mode Shapes

Mode Shapes

 

Fatigue Analysis

Results from the fatigue analysis are summarised below. The fatigue life predicted by the Rainflow Cycle Counting method is just over 8 years, so fatigue is clearly an issue for the riser system as it currently stands. The engineering design team would probably look into VIV suppression mechanisms such as strakes or fairings. It should be noted that this is a highly simplified example which is provided for illustrative purposes only. Only one current profile is considered in Shear7, whereas in reality a range of current profiles would be simulated to cover the range of loading conditions likely to be experienced by the riser system. Your attention is also drawn to the other Model Simplifications listed earlier.

Fatigue Results Summary

                              Results Summary

                              ===============

 

 

                Damage Calculated Directly from Time History

 

                Maximum predicted damage  :        .14738E+00

                Corresponding fatigue life:      6.79 years

                Occurring at element      :  1145

                Stress point              :      1

 

 

                Damage Calculated from Stress Spectrum

 

                Maximum predicted damage  :        .21535E+00

                Corresponding fatigue life:      4.64 years

                Occurring at element      :  1145

                Stress point              :      1

 

 

                Damage Calculated from Rainflow Counting

 

                Maximum predicted damage  :       .12238E+00

                Corresponding fatigue life:      8.17 years

                Occurring at element      :  1145

                Stress point              :      1